
Lecture 9

In the last lecture, we learned the concept of symmetric points and the way to find imaging circle under
linear fractional transformation. In this lecture, we study the orientation of a given circle.

1. Using z2, z3 and z4, we can determine a unique circle passing across these three points. We denote
this circle by C. If z is on the circle, then we have Im(z, z2, z3, z4) = 0.

2. C automatically separate the complex plane into two parts. One part contains all z where Im(z, z2, z3, z4) <
0. We call this part the algebraic left-hand side of the circle C with respect to the triple (z2, z3, z4). Another
part contains all z where Im(z, z2, z3, z4) > 0. We call this part the algebraic right-hand side of C with
respect to the triple (z2, z3, z4).

3. The definition in 2 for the left and right-hand side of C corresponding to the triple (z2, z3, z4) is an
algebraic way to describe the side for a given circle. Here is a geometric way to understand it. If the triple
(z2, z3, z4) is given, then we can decide a unique direction on the circle C so that by following this direction
we can go from z2 to z3 and then to z4 in order. One can easily see that the direction that we can have is
just counterclockwise or clockwise direction. But once (z2, z3, z4) is given in order, then the counterclockwise
or clockwise direction is uniquely fixed so that along this direction we go from z2 to z3 and then to z4 in
order. Clearly if you are moving along counterclockwise direction, then the interior part of circle C is on
your left. This corresponds to the left-side defined in 2 where Im(z, z2, z3, z4) < 0. Meanwhile the exterior
part of C is on your right. This is the right side defined in 2 where Im(z, z2, z3, z4) > 0. But if you are
moving clockwisely, then the situation is different. Now you can see that exterior part of C is on your left
which corresponds to the region where Im(z, z2, z3, z4) < 0, while the interior part is on your right which
corresponds to the region where Im(z, z2, z3, z4) > 0.

4. One may want a rigorous argument for the facts stated in 3. Here it is. Fixing a triple (z2, z3, z4),
we know that there is unique direction so that we can go from z2 to z3 and then to z4 in order. Suppose
that the direction is counterclockwise (see graph). The situation when direction is clockwise can be similarly
treated. Firstly we assume z is an arbitrary point in the interior part of the circle C. Connecting z3 and z4,
we get a line l. This line l separates the interior of circle C into two parts. One part contains the point z2
and another part does not contain z2. Therefore the position of z can be classified into three cases.
Case 1. z and z2 are on the same side of l In this case we see that we can rotate z − z3 counterclock-
wisely by an angle α so that the new vector has the same direction as z − z4. Clearly α ∈ (0, π). Moreover
we can also rotate z2 − z3 counterclockwisely by an angle β so that the new vector has the same direction
as z2 − z4. Clearly β ∈ (0, π). Fundamental geometry tells us that α > β. Therefore in Case 1, we have
0 < β < α < π. We can calculate that

(0.1)

Im(z, z2, z3, z4) = Im

(
(z − z3)(z2 − z4)

(z − z4)(z2 − z3)

)

= Im

(
|z − z3||z2 − z4|
|z − z4||z2 − z3|

ei [ (arg(z−z3)−arg(z−z4))−(arg(z2−z3)−arg(z2−z4)) ]
)
.

Moreover by the above arguments (also see the graph for case 1), we have arg(z− z3) +α = arg(z− z4) and
arg(z2 − z3) + β = arg(z2 − z4). Applying these two equalities to (0.1), we get

Im(z, z2, z3, z4) =
|z − z3||z2 − z4|
|z − z4||z2 − z3|

sin(β − α).

Since now α− β ∈ (0, π), it holds sin(β − α) < 0. Therefore Im(z, z2, z3, z4) < 0 for case 1;

Case 2. z is on l. In this case one can show that α in case 1 equals to π. Therefore sin(β−π) = − sinβ < 0.
We still have Im(z, z2, z3, z4) < 0.
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Case 3. z is on the side without z2. In this case α ∈ (π, 2π). Moreover from the graph for case
3, we have γ1 > γ2, γ1 + α = 2π and γ2 + β = π. Therefore we know that 2π − α > π − β which show
that α − β < π. Of course we have α − β > 0. This tells us that sin(β − α) < 0 which still shows that
Im(z, z2, z3, z4) < 0.

From the above arguments we know that for all z in the interior part of the circle C, Im(z, z2, z3, z4) < 0.
Now we consider exterior points. Suppose that w is a point on the exterior part of the circle C. Then
its symmetric point w∗ with respect to the circle C must be in the interior part of C. By the previous
arguments, we know that Im(w∗, z2, z3, z4) < 0. Since (w∗, z2, z3, z4) = (w, z2, z3, z4), therefore it holds
Im(w, z2, z3, z4) = −Im(w∗, z2, z3, z4) > 0. In summary, we know that if the direction is counterclockwise,
then the geometric left-side (the left if you are moving counterclockwisely, i.e. interior part of C) coincides
with the algebraic left-side (the side where Im(z, z2, z3, z4) < 0). Moreover the geometric right-side (the
right if you are moving counterclockwisely, i.e. exterior part of C) coincides with the algebraic right-side
(the side where Im(z, z2, z3, z4) > 0). If we include the clockwise case in our consideration, we then have

Proposition 0.1. Given a triple (z2, z3, z4) on C, we can find a direction on C so that by following this
direction, we go from z2 to z3 and then to z4 in order. The geometric right-hand side of C coincide with the
algebraic right-hand side of C. The geometric left-hand side of C coincides with the algebraic left-hand side
of C.

With the above proposition and the fact that cross ratio is invariant under linear transformations, we
can show that

Proposition 0.2. Linear transformations map left-hand (right-hand) side to left-hand (right-hand) side.

Remark 0.3. Proposition 0.2 should be understood as follows. given (z2, z3, z4) a triple on a circle C, we
can decide a direction on C. Given an arbitrary linear transformation T , the triple (z2, z3, z4) is sent to
(Tz2, T z3, T z4) which decide a direction for the imaging circle of C. Therefore Proposition 0.2 tells us that
the left side of C with respect to the direction given by (z2, z3, z4) coincides with the left side of the imaging
circle of C with respect to the direction given by (Tz2, T z3, T z4).

Proof of Proposition 0.2. If C is determined by z2, z3 and z4 and the direction of the circle C is given
by the triple (z2, z3, z4), then the imaging circle is determined by Tz2, T z3 and Tz3. Here T is a linear
transformation. Moreover if we go from z2 to z3 and then to z4 in order, then in the imaging circle we can
induce a direction which let us go from Tz2 to Tz3 and then to Tz4 in order. (z2, z3, z4) decide a direction
for C. (Tz2, T z3, T z4) decide a direction for the image of C. If z is on the left of C, then Im(z, z2, z3, z4) < 0.
Therefore Im(Tz, Tz2, T z3, T z4) = Im(z, z2, z3, z4) < 0. This tells us that Tz is on the left of the imaging
circle of C whose direction is given by the triple (Tz2, T z3, T z4). The proof is finished since the right-side
case can be similarly treated.

Now we begin to study some other elementary functions. One of the most important elementary functions
is the exponential function.

Definition 0.4. Given z = x+ iy, we denote by ez the exponential function with ez = ex(cos y + i sin y).

With the above definition, we can remark that

Remark 0.5. |ez| = ex, which depends only on the variable x.

Remark 0.6. ez is a periodic function with period 2kπi.

Remark 0.7. ez is not a function defined on the Riemann sphere. One can show that as x −→ −∞,
ex −→ 0; As x −→∞, ex −→∞. The two limits are different. So ez is not well defined at ∞.

Remark 0.8. ez is derivable. Furthermore one can calculate that (ez)
′

= ∂xu+ i∂xv = ex cos y+ iex sin y =
ez.
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With the definition of ez, we can introduce a sort of so-called elementary transcendental functions. They
are

sinh z =
ez − e−z

2
, cosh z =

ez + e−z

2
.

We can also define the so-called trigo functions. they are

sin z =
eiz − e−iz

2i
, cos z =

eiz + e−iz

2
.

Clearly sinh and cosh functions have period 2kπi, while sin and cos functions have period 2kπ. These func-
tions are all well-defined on C but not on the Riemann sphere.

We now begin to study the inverse function of ez. Letting z = ρeiθ, we assume w = w1 + iw2 so that
z = ew. Clearly we have

ρeiθ = ew1eiw2 . (0.2)

Taking absolute value on both sides above, we get ρ = ew1 . Therefore it holds w1 = log ρ = log |z|. Plugging
this w1 into (0.2), we know that

eiθ = eiw2 .

Since cos and sin are periodic functions with period equaling to 2π, it holds w2 = θ + 2kπ where k is an
integer. Therefore we know that

w = log |z|+ i(arg(z) + 2kπ).

But arg(z) is not uniquely decided. So we define Arg(z) which is called principal argument and takes values
in [−π, π). With the principal argument, we know that

w = log |z|+ i(Arg(z) + 2kπ), k ∈ Z (0.3)

gives us all solutions of (0.2). For an inverse function of ez, there is only one valued assigned to each z. In other
words, we can only choose one value from (0.3) to define an inverse function of ez. Therefore we need a rule to
decide a unique k in (0.3). An easy way to do so is to assign for each z a restriction function α(z). This α(z)
is real valued and it is used to restrict the imaginary part of w in (0.3) within the interval [α(z), α(z) + 2π).
With this α(z), we know that we can fix a unique k ∈ Z so that Arg(z) + 2kπ ∈ [α(z), α(z) + 2π). Therefore
this value can be used to define an inverse function of ez.

Example 1: α(z) ≡ π/4. In this case, w2(z) takes its value in [π/4, π/4 + 2π), for all z ∈ C. If z = i, then
we know that Arg(i) = π/2. If we want π/2 + 2kπ ∈ [π/4, π/4 + 2π), then k = 0. This tells us that if the
restriction function α(z) ≡ π/4, then log i = π/2.

Example 2: Find log i with α(z) = 3π/4.
Solution: α(z) ≡ 3π/4 implies that w2(z) ∈ [3π/4, 3π/4 + 2π). If we want π/2 + 2kπ ∈ [3π/4, 3π/4 + 2π),
then k = 1. Therefore in this case, log i = i(π/2 + 2π).
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